巨大的开放在线课程(MooCs)已成为电子学习的热门选择,因为他们的灵活性很大。但是,由于大量的学习者及其多样化的背景,它征税,以提供实时支持。学习者可能会在各自的MooC论坛上发布他们的混乱和斗争,但随着MooC教师的大量员额和高工作量,教师不太可能识别所有需要干预的学习者。由于数据的不平衡和任务的复杂性,已被研究是一种自然语言处理(NLP)问题的研究,并且已知是具有挑战性的。在本文中,我们探讨了贝叶斯的第一次对学习者的文本帖子进行了两种方法:蒙特卡罗辍学和变分推论,作为评估学习者帖子的教师干预需求的新解决方案。我们基于在类似情况下基于概率模型的基于概率模型的概率模型进行比较模型,对于应用预测的不同情况。结果表明,贝叶斯深度学习提供了传统神经网络未提供的批判性不确定性措施。这增加了对AI的说明,信任和稳健性,这在基于教育的应用中至关重要。另外,与非概率神经网络相比,它可以实现类似或更好的性能,以及较低的方差。
translated by 谷歌翻译
高斯进程(GPS)是非参数贝叶斯模型,广泛用于各种预测任务。以前的工作在通过差异隐私(DP)向GPS增加了强大的隐私保护,仅限于仅保护预测目标的隐私(模型输出)而不是输入。我们通过为模型输入和输出引入DP保护而引入GPS来打破此限制。我们通过使用稀疏GP方法来实现这一目标,并在已知的诱导点上发布私有变分近似。近似协方差调整到大约占DP噪声的增加的不确定性。近似可用于使用标准稀疏GP技术计算任意预测。我们提出了一种使用应用于验证设置日志可能性的私有选择协议的超参数学习方法。我们的实验表明,考虑到足够量的数据,该方法可以在强大的隐私保护下产生准确的模型。
translated by 谷歌翻译